

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Designing rapid onset selective serotonin re-uptake inhibitors. 2: Structure-activity relationships of substituted (aryl)benzylamines

Donald S. Middleton ^{a,*}, Mark Andrews ^a, Paul Glossop ^a, Geoffrey Gymer ^a, David Hepworth ^{a,†}, Alan Jessiman ^a, Patrick S. Johnson ^a, Malcolm MacKenny ^a, Michael J. Pitcher ^a, Tony Rooker ^a, Alan Stobie ^a, Kim Tang ^{b,‡}, Paul Morgan ^c

- ^a Department of Discovery Chemistry, Pfizer Global Research and Development, Sandwich, Kent CT13 9NJ, UK
- ^b Department of Discovery Biology, Pfizer Global Research and Development, Sandwich, Kent, CT13 9NJ, UK
- ^c Pharmacokinetics, Dynamics and Metabolism, Pfizer Global Research and Development, Sandwich, Kent CT13 9NJ, UK

ARTICLE INFO

Article history: Received 29 April 2008 Revised 2 June 2008 Accepted 2 June 2008 Available online 5 June 2008

Keywords: Selective serotonin reuptake inhibitors Volume of distribution

ABSTRACT

A series of substituted benzylamines **2–48** were prepared as part of a strategy to identify structurally differentiated and synthetically more accessible selective serotonin reuptake inhibitors, relative to clinical candidate **1**. In particular, **44** and **48**; demonstrated low nanomolar potency and good selectivity, in a structurally simplified template and, in vivo, very low Vdu, significantly lower than **1**, and a more rapid T_{max} , consistent with our clinical objectives.

© 2008 Elsevier Ltd. All rights reserved.

Selective serotonin re-uptake inhibitors (SSRIs) have emerged in the last 20 years as a highly important mechanistic class in the management of depression¹ and more recently have emerged as potentially beneficial in numerous other areas² including anxiety, panic disorders, and phobia.

In an earlier communication³ we described our strategy to access SSRIs which demonstrated very rapid elevation of central 5-HT levels, to support rapid onset of efficacy, for use in acute therapy-compatible indications including, for example, pre-menstrual syndrome, obesity and male sexual dysfunction. This work led to the successful identification of our first clinical candidate 1, which possessed excellent potency, selectivity and pre-clinical pharmacokinetic properties, consistent with our target profile.

As part of our back-up programme to **1**, we wished to identify a compound in alternative chemical space to mitigate the risk of encountering structure-related toxicological issues with the prototype during clinical evaluation. In addition, we wished to identify an alternative lead series with improved synthetic accessibility to more readily allow us to investigate the effect of substitution on

potency, selectivity and permeability, as measured in our Caco-2 assay.

In this communication, we wish to describe the successful execution of this plan which involved the design and exploration of a series of substituted (aryl)benzylamines **2–48**, Figure 1. Compounds **2–48** were designed to be structurally less complex expression of **1**, possessing no stereogenic centres, while retaining the key structural features we believed were needed for potency.

Our overall target was to identify an orally bioavailable SSRI (IC₅₀) < 10 nM, >100-fold selectivity over dopamine re-uptake inhibition (DRI) and noradrenaline re-uptake inhibition (NRI) possessing high permeability to support both oral delivery and CNS penetration. In addition we were seeking a low Vd compound to support our objectives of rapid $T_{\rm max}$.

While much analysis has been reported on properties which afford good oral absorption,⁵ properties which define good passive diffusion across the blood brain barrier (BBB) appear less clearly characterised, though they are generally regarded to be more stringent.⁶ Our overall design criteria to support our goals of both good oral bioavailability and high CNS penetration were, therefore; (1) MWt < 400, (2) moderate lipophilicity (logD 2–3), (3) low H-bond donor (HBD) count \leq 3, (4) low Topological Polar Surface Area (TPSA) < 80Å^2 , consistent with the parameters applied in the discovery of 1.

Our first goal, Table 1, was to establish whether high potency⁷ and target selectivity, similar to that observed in the conformationally restricted series exemplified by **1** and could be achieved in

^{*} Corresponding author. Tel.: +44 1304 648393; fax: +44 1304 651987.

E-mail address: don.s.middleton@pfizer.com (D.S. Middleton).

[†] Present address: Pfizer Global Research and Development, Eastern Point Road, Groton CT 06340 USA

[‡] Present address: Pfizer Research Technology Center, 620 Memorial Drive, Cambridge, MA 02113, USA.

Figure 1. Proposed structurally simplified expressions of **1**.

Table 1
Human, SRI, DRI, NRI activities and physicochemical properties for phenyl-methanes, ethers and thioethers 2–30

Compound	R	W	X	R ¹	\mathbb{R}^2	h-SRI (IC ₅₀ , nM) ^a	h-DRI (IC ₅₀ , nM) ^a	h-NRI (IC ₅₀ , nM) ^a
2	Н	Н	CH ₂	Cl	Cl	30	2000	200
3	Me	Н	CH ₂	Cl	Cl	5	320	1300
4 ^b	Me	Н	CHMe	Cl	Cl	40	NT	NT
5 ^b	Me	Н	СНОН	Cl	Cl	250	1800	3100
6 ^b	Me	Н	CHOMe	Cl	Cl	>1000	_	_
7	Me	Н	C=O	Cl	Cl	50	2100	8600
8	Me	Н	CH ₂	-OCF ₃	Н	45	_	_
9	Н	Н	CH ₂	-SMe	Н	4	5900	7300
10	Me	Н	CH ₂	-SMe	Н	5	11,000	1300
11	Н	Н	S	-CF ₃	Н	70	2800	6000
12	Me	Н	S	-CF ₃	Н	28	>10,000	9200
13	Me	Н	S	Н	-CF ₃	40	9900	2000
14	Me	Н	S	Cl	Н	20	NT	NT
15	Me	Н	S	Н	Cl	12	36	50
16	Me	Н	S	-SMe	Н	22	5400	640
17	Me	Н	0	Cl	Н	22	100	180
18	Me	Н	0	Н	Cl	190	910	50
19	Me	Н	0	Cl	Cl	11	140	290
20	Me	Br	0	-CF ₃	Н	3	>10,000	>10,000
21	Me	Н	0	-OCF ₃	Н	7	5800	6700
22	Me	Н	0	-OMe	Н	25	6400	680
23	Me	Н	0	-OEt	Н	30	6400	1500
24	Me	Н	0	-Br	Н	12	640	760
25	Me	Н	0	-CN	Н	60	NT	NT
26	Me	Н	0	-CyP	Н	17	4200	1400
27	Me	Н	0	CH ₂ Cyp	Н	660	16,000	2700
28	Me	F	0	-SMe	Н	10	7100	630
29	Me	Cl	0	-SMe	Н	4	6100	4900
30	Me	Br	0	-SMe	Н	2	1800	7900

^a All assay determination $\geqslant n = 2$. Ref. 7.

simple templates, in which there were no stereo centres. Excitingly, the simple diphenymethane⁸ analogues **2** and **3** were found to be potent (IC₅₀ 30 and 5 nM, respectively). Furthermore, **3** also demonstrated encouraging selectivity over h-DRI (60-fold) and h-NRI (260-fold), demonstrating both high potency and target selectivity over other monoamine transporters could be achieved in this simplified template. Introduction of substitution at the methylene centre **4–7** all resulted in a drop in potency. Exploration of the (chloro)phenyl SAR pattern revealed that the **3**,4-dichloro substitution pattern, which was generally found to be optimal in **1**,⁹ could be replaced with a single 4-substituent. For example, both –OCF₃ **8** and –SMe **9**, **10** were found to be well tolerated. In particular, for example, **9** displayed both excellent potency against h-SRI (IC₅₀ 4 nM) and selectivity over DRI and NRI (>1000-fold).

A series of phenyl thioethers¹⁰ **11-16** were also explored, seeking to develop the SAR from the phenylmethane analogues **2–10** in a still more synthetically more accessible series. Disappointingly, however, these analogues tended to be generally less potent or less selective than we ideally sought. For example direct thioether analogue **16**, of phenylmethane **10**, was approximately 5-fold less potent in the SRI assay (22 nM vs 5 nM). Furthermore this phenyl thioether template, in practice, offered only limited additional synthetic accessibility, relative to the phenylmethane series, due to limitations in accessing appropriately substituted thiol precursors.

Phenyl ethers¹¹ **17–30** were next explored, with this series being found to be synthetically the most accessible of those investigated. Generally, 3,4- or 4-substitution on the distal ring was found to give the best balance of potency against SRI and selectiv-

^b Racemate; NT, not tested; Cyp, cyclopropyl.

ity over DRI and NRI. For example, p-CF₃ **20**, p-OCF₃ **21** and p-SMe **28–30** all showed excellent potency against SRI and selectivity over DRI and NRI. Other *p*-substituents explored **22–27** showed a range of activities with generally good potency retained. As with the phenylmethane analogues **9** and **10** and the phenyl thioether analogue **16**, *p*-SMe substitution on the distal phenyl ring, relative to the amino methyl group, retained excellent potency against SRI and good selectivity, **28–30**. In addition, simple lipophilic substitution (W) was also found to be tolerated at C-4 in these analogues.

With several low MWt, potent and selective serotonin reuptake inhibitors identified, we next explored introduction of polar substitution, Table 2, (retaining the distal ring substitution patterns which generally afforded the best pharmacology), to attenuate lipophilicity and optimise potency, as described previously.³ Pleasingly, polar substitution at C-5 was generally well tolerated in the phenyl methane template **31–34** with nanomolar potency against SRI observed and good permeability in the Caco-2 assay, despite introduction of primary sulfonamide and carboxamide groups. Unfortunately, selectivity over DRI and NRI was generally only moderate.

Thioethers **35–42** generally showed high levels of potency and selectivity. For example, **38**, **41** and **42** all showed low nM SRI

activity and excellent selectivity over both DRI and NRI. Unfortunately, this phenyl thioether series in practice, offered only limited additional synthetic accessibility, relative to the phenylmethane template, due to limitations in readily accessing appropriately substituted thiol precursors.

Overall, substituted phenyl ethers **43–48** were generally found to offer the best balance of potency, selectivity and synthetic accessibility. For example, **44**, was found to show excellent potency (SRI IC₅₀ 5 nM) and retained target selectivity over both DRI and NRI. The compound also demonstrated excellent permeability in the Caco-2 assay. While we found that, generally, C-5 polar substitution provided the best balance of potency and selectivity in this series, substitution at C-4 was also found to be well tolerated. Progression of **44** and **48** to in vivo PK studies, to benchmark the phenyl ether series against clinical agent **1**, for Vd and $T_{\rm max}$, is shown in Table 3.

Excitingly, both **44** and **48** showed not just equivalent, but significantly reduced, Vd (6 L/Kg vs 19 L/Kg) and Vdu (60 L/Kg and 88 L/Kg vs 1050 L/Kg) relative to **1**. Furthermore, both compounds showed a shorter T_{max} (0.5 h) relative to **1** (2 h) in this study, again, consistent with our clinical objectives of rapid elevation of 5-HT levels. The Vd differences between these two series of compounds

Table 2Human, SRI, DRI, NRI activities and physicochemical properties for amide and sulphonamide-substituted biaryl amines **31–48**

Compound	R	W	X	R^1	R^2	h-SRI (IC ₅₀ , nM) ^a	h-DRI (IC ₅₀ , nM) ^a	h-NRI (IC ₅₀ , nM) ^a	$c \log P (\log D)$	HBD (TPSA (Å ²))	Caco-2 (%/h) (A-B/B-A)
1		-SO ₂ NH ₂				1	90	770	(2.3)	3 (83)	18/7
31	Н	H ₂ NCO	CH_2	Cl	Cl	4	105	50	(1.7)	3 (55)	31/28
32	Me	H ₂ NCO-	CH_2	Cl	Cl	3	260	430	(3.0)	2 (46)	>42/>42
33 ^b	Н	H ₂ NO ₂ S-	CH_2	Cl	Cl	6	85	130	(2.9)	3 (81)	36/31
34 ^b	Me	H ₂ NO ₂ S-	CH_2	Cl	Cl	60	200	1050	3.5	2 (72)	14/18
35	Me	H ₂ NO ₂ S-	S	-CF ₃	Н	26	>10,000	>10,000	(2.6)	2 (97)	>42/>42
36	Me	H ₂ NO ₂ S-	S	Н	$-CF_3$	30	>10,000	3000	3.5	2 (97)	NT
37 ^c	Me	H ₂ NO ₂ S-	S=0	-CF ₃	Н	1900	>10,000	>10,000	1.6	2 (94)	NT
38	Me	MeO ₂ SHN-	S	-CF ₃	Н	3	6900	6400	4.1	1 (83)	NT
39	Me	H ₂ NO ₂ S-	S	-SMe	Н	20	NT	NT	3.1	2 (122)	NT
40	Н	MeO ₂ SHN-	S	-SMe	Н	10	3800	2000	3.2	2 (117)	21/22
41	Me	MeO ₂ SHN-	S	-SMe	Н	3	1500	530	(2.5)	1 (108)	27/41
42	Me	MeO ₂ S(Me)N-	S	-SMe	Н	5	3600	70	3.8	0 (99)	NT
43	Me	H ₂ NO ₂ S-	0	$-OCF_3$	Н	9	8000	>10,000	3.3	2 (90)	NT
44	Me	MeO ₂ SHN-	0	$-CF_3$	Н	5	>10,000	770	(2.3)	3 (67)	27/31
45	Me	H ₂ NCO-	O	-OCF ₃	Н	3	>10,000	4200	(2.3)	2 (65)	27/27
46	Me	-CONHMe	O	-OCF ₃	Н	10	>10,000	2900	3.8	1 (51)	NT
47	Me	-CONMe ₂	O	-OCF ₃	Н	100	>10,000	510	3.6	0 (42)	NT
48	Me	CH ₂ NHSO ₂ Me	0	-OCF ₃	Н	11	5800	5600	2.1	1 (76)	23/31

^a All assay determination n = 2. Ref. 7.

Table 3

Dog pharmacokinetic data for 1, 44 and 48

	h-SRI (IC ₅₀ , nM)	Selectivity over DRI and NRI	Caco-2 (A-B/B-A) (%/h)	$\log D$	Amine pK _a	Dog pharmacoki	Oog pharmacokinetics (i.v 0.5 mg/kg ($n = 3$), p.o. 1 mg/kg ($n = 3$)				
	,		()		Fa	Cl (ml/min/kg)	Vd (Vdu) (L/Kg)	$T_{1/2}(h)$	F (%)	$T_{\text{max}}(h)$	
1	1	90/770	18/7	2.3	8.5	31	19 (1050)	7	66	2	
44	5	2200/150	27/31	2.3	9	14	6 (60)	4	_	0.5	
48	11	530/520	23/31	2.1	8.5-9 ^a	16	6 (88)	4	60	0.5	

^a estimated value, calculated using experimentally measured data from within phenyl ether series.

^b C-5 substitution confirmed by NMR studies.

c Racemate; NT, not tested.

is noteworthy. Many factors are known to influence Vd, ¹³ including lipophilicity and the nature and degree of ionization at physiologically relevant pH. Given their similar physicochemical properties (Log D and p K_a , Table 3) the magnitude of the Vd differences is perhaps surprising and indicates chemical structure plays a significant, if less predictable, role in influencing Vd.

In summary, a series of non-chiral substituted (aryl)benzylamines have been identified which possess excellent potency in our serotonin transporter assay. These were found to be synthetically more accessible than lead ${\bf 1}$, which allowed rapid exploration of SAR. Overall, the phenyl ether series offered the best balance of target pharmacology, synthetic accessibility, permeability and physicochemistry. In particular, ${\bf 44}$ and ${\bf 48}$; demonstrated low nanomolar potency and selectivity in a structurally simplified template, relative to ${\bf 1}$. In vivo, ${\bf 44}$ and ${\bf 48}$ demonstrated very low Vdu, significantly lower than clinical agent ${\bf 1}$, and a more rapid $T_{\rm max}$. Our work describing the identification of a clinical candidate from within this template will be the subject of our next communication.

Acknowledgments

We gratefully acknowledge the able assistance of Ms. Clare Finnis-Lane, Ms. Isabella Sergides, Mr. Leigh Turner and Ms. Teresa Tyler, for transporter assays and Mrs. Joanne Bennett for Caco-2 permeability studies and Dr. Iain Gardner and Mr. Richard Mitchell in the department of Pharmacokinetics, Dynamics and Metabolism. We also thank the staff of the Structural and Separation Sciences Department for analytical and spectroscopic data.

References and notes

- Preskorn, S. H.; Ross, R.; Stanga, C. Y. Handbook of Experimental Pharmacology 2004, 157, 241 (Antidepressants).
- 2. Lee, K. C.; Feldman, M. D.; Finley, P. R. Formulary 2002, 37, 240.

- 3. Middleton, D. S.; Andrews, M. D.; Glossop, P.; Gymer, G.; Jessiman, A.; Johnson, P. J.; MacKenny, M.; Pitcher, M. J.; Rooker, T.; Stobie, A.; Tang, K.; Morgan, P. Bioorg, Med. Chem. Lett. 2006, 16, 1434.
- 4. Smith, D. A.; van de Waterbeemd, H.; Walker, D. K. Pharmacokinetics and Metabolism in Drug Design. Wiley-VCH (Mannhold, D.; Kubinyi, H.; Timmerman, H. Ed).
- 5. Lipinski, C. A. Drug Discovery Today: Technologies 2004, 1, 337.
- Many methods have been evaluated to establish physicochemical trends for good passive CNS penetration. However, given the complex multi-factorial nature of CNS permeability, no strongly predictive correlation has been reported. See: Waterbeemd, H. van de.; Smith, D. A.; Beaumont, K.; Walker, D. J. Med. Chem. 2001, 44, 1313. and references cited therein.
- Monoamine transporter assays were a modification of those described by Blakely, R. D.; Clark, J. A.; Rudnick, G.; Amara, S. G. Anal. Biochem. 1991, 194, 302. HEK293 cells expressing a single human amine transporter protein (7500 cells/ well in Millipore 96-well filter bottom plates) were pre-incubated at 25 °C for 5 min with assay buffer containing vehicle (DMSO in water) or test compound. Uptake of neurotransmitter into the cells was initiated by the addition of tritiated 5-HT (50 nM), NA (200 nM) or DA (200 nM) substrates, the samples were shaken in an incubator at 25 °C for 5 min (5-HT, DA) or 15 min (NA). The assays were stopped by an ice-cold buffer wash followed by filtration. The filters were then dried before measuring the amount of radioactivity taken up into the cells by scintillation counting. Potency of test compounds was quantified as IC50 values, that is, concentration required to inhibit the specific uptake of radiolabelled substrate into the cells by 50% relative to maximum (vehicle only). A minimum of two measurements of the IC50 were made for each compound. Typically, the IC50s did not fit a normal distribution. Thus, geometric means were used to minimise the distorting effect of outliers. From validation data sets on all three transporter assays, we established that the 95% confidence intervals were 1.3-fold (5-HT, DAT) to 1.5-fold (NA) of the IC₅₀, that is, IC₅₀ = 4 nM would have 95% confidence intervals of 1.4-6.6 nM.
- 8. Kung, H. F.; Newman, S.; Choi, S-R.; Oya, S.; Hou, C.; Zhuang, Z-P.; Acton, P. D.; Plossl, K.; Winkler, J.; Kung, M-P. *J. Med. Chem.* **2004**, *47*, 5258.
- 9. Welch, W. M. Adv. Med. Chem. 1995, 3, 113.
- (a) Oya, S.; Choi, S-R.; Kung, M-P.; Kung, H. F. Nucl. Med. Biol. 2007, 34, 129; (b) Parhi, A. K.; Wang, J. L.; Oya, S.; Choi, S-R.; Kung, M-P.; Kung, H. F. J. Med. Chem. 2007, 50, 6673; (c) Wellsow, J.; Kovar, K-A. J. Pharm. Pharmaceut. Sci. 2002, 5, 245.
- (a) Ruigt, G. S. F.; Leysen, D.; Wieringa, J.H. US 5 190 965.; (b) Andrews, M. D.; Hepworth, D.; Middleton, D. S.; Stobie, A. US 6 448 293.; (c) Whitlock, G. A.; Fish, P. V.; Blagg, J. Bioorg. Med. Chem. Lett. 2008, 18, 596; (d) Vercouillie, J.; Deuther-Conrad, W.; Scheunemann, M.; Emond, P.; Fischer, S.; Funke, U.; Steinbach, J.; Guilloteau, D.; Brust, P. Bioorg. Med. Chem. Lett. 2007, 17, 4991.
- 12. Middleton, D. S., et al. These results will be published elsewhere.
- 13. Lombardo, F.; Obach, R. S.; Shalaeva, M. Y.; Gao, F. *J. Med. Chem.* **2004**, 47, 1242.